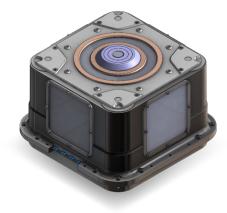


BHT-1500 Hall Effect Thruster


Pioneering center-mounted cathode. Compact and efficient.

Efficient and high-performance propulsion system designed for use with xenon and krypton propellants.

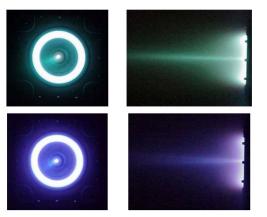
Busek's BHT-1500 is a 2kW-class Hall Effect thruster with an innovative center-mounted cathode. The center-mounted cathode precludes performance degradation and outperforms all other competitive designs by minimizing beam divergence.

Using novel design features like a two-piece "composite" anode and shortened dielectric channel, the BHT-1500 stands apart from other SPT designs.

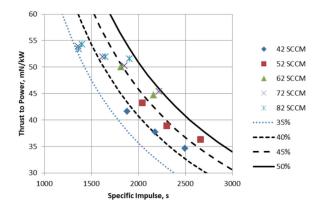
Table: Standard Specifications

Discharge Power:	1500 W	Thruster Mass:	6.3 kg
Throttle Range:	1000 W - 2700 W	Cathode Mass:	0.3 kg
Nominal Thrust:	101 mN	Demonstrated Impulse:	Pending
Nominal Specific Impulse:	1710 seconds	Predicted Total Impulse:	> 6.5 MN-s
Propellants:	Xenon, Krypton, Iodine		

Operation with the internally mounted cathode confers a number of advantages, including improved performance, reduced sensitivity of performance to cathode flow rate, and more efficient cathode-plume coupling. In addition, the thruster is less sensitive to vacuum facility background pressure and exhibits less plume divergence.


Thruster Thruster Performance Details

The life of the thruster extends well beyond the typical needs of GEO satellites and Busek's design minimizes erosion via the use of a virtual magnetic field wall. The BHT-1500 thruster system operates in two modes; orbitraising mode producing over 120 milliNewtons (mN) of thrust with 1,700 seconds total specific impulse (I_{sp}) at 1,800 Watts (W) of power, and station-keeping mode producing more than 100 mN thrust and 1,900 seconds I_{sp} .


Power	High Thrust Mode		High I _{sp} Mode	
	Thrust (mN)	Total I _{sp} (s)	Thrust (mN)	Total I _{sp} (s)
1,000	68	1615	58	1860
1,500	101	1710	87	1895
1,800	120	1740	103	1940
2,000	134	1700	118	1915
2,400	158	1735	143	2045
2,700	179	1865	154	2035

Krypton Performance

Thruster testing was performed at Busek's T8 facility to determine performance and the operating efficiency with krypton propellant. The use of krypton increased specific impulse by approximately 140-190 s at equivalent power and voltage, but decrease total efficiency by 7% to 8%.

BHT-1500-C operating on xenon (top) and krypton (bottom)

Curves of thrust to power ratio vs. specific impulse including experimental krypton data.

A full writeup of the most recent BHT-1500 characterization tests are available at the following papers:

Szabo, J., Tedrake, R., Kolencik, G., Pote, B., "Measurements of a Krypton Fed 1.5 kW Hall Effect Thruster with a Centrally Located Cathode", 35th International Electric Propulsion Conference, Atlanta, Georgia, October 2017. http://electricrocket.org/IEPC/IEPC_2017_26.pdf

Diamant, K., Curtiss, T., Spektor, R., Beiting, E., Hruby, V., Pote, B., Kolencik, J., and Paintal, S., "Performance and Plume Characterization of the BHT-1500 Hall Thruster," Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion Conference and 6th Nano-satellite Symposium, Hyogo-Kobe, Japan, July 4-10, 2015. http://electricrocket.org/IEPC/IEPC-2015-69_ISTS-2015-b-69.pdf